vse-zabolevaniya.ru
ГлавнаяАнализыБиохимический метод

Биохимический метод


В самостоятельную науку биологическая химия выделилась почти 100 лет назад, но многие биохимические процессы известны людям с давних времен и использовались в различных областях производства, сначала кустарного, а в последствии и промышленного масштаба. Например, на биохимических реакциях основано хлебопечение, сыроварение, изготовление вин, выделка кожи.
Сыроварением и изготовлением кисломолочных продуктов люди занимались еще до нашей эры, об этом упоминается даже в поэмах Пэмера. В процессе приготовления кисломолочных продуктов большую роль играют молочнокислые бактерии.
Использование лекарственных растений для лечения болезней привело к поиску действующего вещества и заставило задуматься о том, что с ним происходит в организме человека. Употребление плодов, зелени, изготовление растительных красок также привлекло интерес к химическому составу растений. Многие лекарственные вещества различного происхождения описаны в труде великого арабского врачевателя Авиценны «Канон врачебной науки».
Известный итальянский художник Леонардо да Винчи проводил различные опыты и сделал заключение о том, что живые организмы могут существовать только в той атмосфере, в которой может появиться пламя. Теперь уже всем известно, что почти всем жи4
вым организмам необходим кислород, содержащийся в атмосферном воздухе и обеспечивающий процесс горения. В конце XVIII в. было открыто значение дыхания и объяснена роль кислорода для живого организма.
Изучение химического состава живых организмов позволило английскому врачу и химику У. Прауту в 1827 г. разделить молекулы на белки, жиры и углеводы.
Химический состав организма человека вызывал большой интерес в научном мире. Немецкий химик Ф. Велер в 1828 г. впервые получил такое органическое вещество, как мочевина, сначала из аммиака и циановой кислоты, а затем из аммиака и углекислого газа. В 1882 г. ученый И.Я. Горбачевский (Украина) получил мочевую кислоту из глицина, а в дальнейших работах выявил процесс образования мочевой кислоты в живых организмах: мочевина и мочевая кислота образуются в результате превращения белков в организме, и их уровень в крови является важным показателем состояния белкового обмена. И. Я. Горбачевский известен и другими исследованиями в области биохимии (получение метилмочевой кислоты, креатина, открытие ксантиноксидазы). Именно он доказал то, что белки состоят из аминокислот, разработал способ определения азота в моче и других биологических материалах.
В 1854 г. французский химик П. Бертло получил в ходе лабораторных опытов жиры, а в 1861 г. русский химик А. М. Бутлеров высказал теорию строения органических соединений. Изучением микроорганизмов и вызываемого ими брожения занимался французский микробиолог Л. Пастер. Брожение - это расщепление углеводов под воздействием ферментов, происходящее с участием кислорода или без него и приводящее к образованию энергии, которую микроорганизмы используют для своей жизнедеятельности.
В организме человека брожение осуществляется в кишечнике населяющими его микроорганизмами, под воздействием выделяемых ими ферментов. Изучением брожения занимался и немецкий химик Э. Бухнер, который доказал, что процесс расщепление сахара имеет более химическую природу, чем биологическую, так как происходит с участием не только дрожжей (живых грибков), но и экстракта из них.
Большой вклад в изучение белков внес немецкий химик Э. Фишер, определивший строение и свойства большинства аминокислот. Также он установил химическую связь между аминокислотами в белках, что явилось основой пептидной теории строения белков. В 1926 г. американский биохимик Д. Самнер получил уреазу (фермент) и доказал, что он является белком. Дальнейшее изучение ферментов привело к открытию строения витаминов и определило превращение их в организме. Были изучены гликолиз (бескислородное расщепление углеводов) и цикл трикарбоновых кислот (циклические реакции, в ходе которых образуются вещества с большим запасом энергии). Открытие нуклеиновых кислот в составе белков и модели строения ДНК стало прорывом для биологии и медицины (биохимии, генетики). За это в 1953 г. английский врач и биолог Ф. Крик и американский биолог Д. Уотсон были удостоены Нобелевской премии.
Все эти открытия и достижения, а также дальнейшие биохимические исследования позволили описать обмен веществ в организме человека. При различных патологических состояниях происходят изменения химического состава в клетках, тканях, биологических жидкостях и выделениях. Наиболее часто биохимическому анализу подвергают кровь, мочу, кал, слюну, ликвор, желчь и желудочный сок. Реже исследуют химический состав красного костного мозга, околоплодной жидкости, пота, рвотных масс, волос, ногтей и спермы.
Химический состав биологического материала может изменяться как количественно (увеличение или понижение содержания каких-либо веществ, нарушение соотношения между ними), так и качественно (выявление отсутствующих или не определяющихся в норме веществ). В связи с этим биохимический анализ в некоторых случаях проводят прицельно, определяя уровень вещества в исследуемом материале или выявляя только его присутствие.
Многие наследственные заболевания связаны с нарушением обмена веществ. Часто это вызвано генетически обусловленным дефицитом каких-либо ферментов, в таком случае биохимические исследования помогают поставить точный диагноз. Иногда для этого подвергают анализу и кусочки тканей внутренних органов.
Биохимические исследования позволяют выявить некоторые нарушения обмена веществ уже в период внутриутробного развития или сразу после рождения ребенка, при этом возможно раннее начало лечения наследственных заболеваний, что дает возможность нормализовать состояние плода или ребенка, наилучшим образом обеспечить условия для его развития в соответствии с возрастом.
С помощью распространенных биохимических анализов можно выявить наличие нарушений обмена веществ, а для постановки точного диагноза проводят более детальные исследования. Многие биохимические анализы, позволяющие выявить наследственные нарушения обмена веществ, угрожающие жизни или развитию детей, в настоящее время проводят массово в форме скрининг-тестов. Например, всех новорожденных в роддоме обследуют на фенилкетонурию. Кроме того, с помощью биохимических тестов выявляют такие за
болевания, как энзимопатии, гликогенозы, муковисцидоз, адреногенитальный синдром. Исследованию в таких случаях подвергают наиболее доступный материал от больного (кровь и мочу).
После скринингового обследования делают уточняющие биохимические анализы, определяют количество вещества, свидетельствующего о заболевании, в единице исследуемого материала и следят за его уровнем в организме в дальнейшем.
Современные биохимические лаборатории оснащены компьютерами и анализаторами, которые делают возможным проводить одновременно большое число исследований с высокой точностью результатов и их расшифровкой. Биохимические анализы выполняют на основе таких методов, как хроматография, электрофорез и центрифугирование.

Хроматография

Хроматография - это метод установления химического состава смеси, основанный на определенном распределении веществ, находящихся в разном агрегатном состоянии (газ, жидкость, твердые частицы) между двумя фазами (подвижной или неподвижной). К подвижной фазе относятся газы и жидкости, а к неподвижной - твердые вещества. В определенных условиях вещества в смеси начинают распределяться по фазам: газы перемещаются вверх, твердые частицы осаждаются, между ними скапливается слой жидкости, некоторые жидкости тоже могут расслаиваться. Вещества подвижной фазы перемещаются с различной скоростью, что тоже позволяет судить о составе смеси. Распределяясь в анализаторе по фазам, компоненты смеси образуют цветовой столб, при этом для каждого вещества существуют свои цветовые характеристики.
Основоположник метода - русский биолог М. С. Цвет, который, пропуская смеси красящих веществ растительного происхождения через бесцветное впитывающее вещество, обнаружил, что оно окрашивается слоями с различными цветовыми характеристиками. Такой цветовой столбик был назван хромограммой.
В настоящее время существуют множество видов хроматографии. Например, адсорбционная хроматография основана на использовании адсорбентов (твердых впитывающих веществ). Разные вещества впитываются адсорбентами по-разному, именно выявление этих особенностей и позволяет оценить качественный состав исследуемой смеси. Распределительная хроматография основана на разной растворимости веществ, находящихся в разной фазе.
Ионообменная хроматография основана на проникновении ионов подвижной фазы (исследуемой жидкости) в вещество неподвижной фазы, которое происходит за счет электростатического взаимодействия между ионами этих веществ. Способность твердых веществ выпадать в осадок позволяет проводить осадочную хроматографию.
Существует еще эксклюзионная хроматография, при которой распределение веществ обеспечивается за счет разной проницаемости молекул жидкой фазы в гель (неподвижную фазу).

Электрофорез

Биохимические анализы, основанные на принципе электрофореза, в медицинской практике используют очень широко, так как одновременно информативны и экономичны. Метод электрофореза, разработанный в 1937 г. шведским биохимиком А. Тиселиусом, позволяет разделять макромолекулы по фракциям и основан на свойствах макромолекул при растворении в воде приобретать электрический заряд. При воздействии на раствор электрического поля молекулы притягиваются к электроду с противоположным зарядом.
Скорость перемещения молекул зависит от их размера и электрического заряда. Так, молекулы белка амфотерны, т. е. имеют положительный заряд на одном конце и отрицательный на другом, поэтому их скорость и направление перемещения зависят от среды (кислая или щелочная). На заряд белковых молекул в средах с одинаковой кислотностью влияют аминокислоты, входящие в их состав. При распаде белковой молекулы образуются цепи аминокислот с разным электрическим зарядом, которые под воздействием электрического поля притягиваются к противоположно заряженному электроду и таким образом разделяются.
Гель - это смесь нескольких веществ, обладающая свойствами твердых тел (сохраняет форму), но очень пластичных (деформируется). Одно вещество при этом всегда состоит из крупных молекул, образующих сетку (каркас), заполненную молекулами малого размера второго вещества.
Для упрощения разделения веществ электрофорез проводят на фильтровальной бумаге, целлюлозе, гелях и агарозе, в этом случае гели выступают в качестве ионного фильтра: мелкие ионы проникают в поры геля, а крупные - нет, что дает дополнительную информацию для исследования.
Наиболее часто электрофорез применяют для разделения белков по фракциям (все белки крови подразделяются на альбумины и несколько видов глобулинов). При многих заболеваниях изменяется не только общее количество белка в крови, но и соотношение его различных фракций. Результаты таких исследований важны для диагностики заболеваний печени, почек, злокачественных опухолей, нарушений иммунитета, инфекционных заболеваний и наследственных болезней.

Центрифугирование

С помощью центрифуги можно разделить жидкие смеси с компонентами разной удельной плотности, так как при очень быстром вращении смеси расслаиваются и частицы разных компонентов в центробежном поле осаждаются с разной скоростью, которая зависит от их
размера и плотности.
Например, при центрифугировании крови в пробирке образуются несколько слоев: верхний желтый слой - плазма, нижний темный слой - клетки крови (эритроциты, лейкоциты и тромбоциты). При этом у границы жидкости можно заметить тонкий сероватый слой тромбоцитов.
Вещества, имеющие диагностическое значение, могут находиться в клетках крови или в плазме, некоторые химические элементы и вещества определяются и там, и там, поэтому разделение крови по фракциям позволяет провести точную диагностику.
Центрифугированию можно подвергнуть любые неоднородные жидкие среды, при этом оно подразделяется на препаративное и аналитическое.
Препаративное центрифугирование
Проводят с целью получения определенных компонентов из биологического материала для дальнейшего биохимического анализа. Такими компонентами могут быть клетки, их органеллы (митохондрии, рибосомы, ядра и др.) и макромолекулы (белки, ДНК и др.). Этот вид подготовки материала к дальнейшему исследованию применяют более часто, чем последующий.
Аналитическое центрифугирование
Проводят для выявления характеристик однородного материала, например, макромолекул. Материал центрифугируют, вследствие чего под контролем оптических систем происходит осаждение частиц. При этом можно определить их однородность, молекулярную массу, структуру, так как форма и масса частиц оказывают влияние на скорость осаждения. Проводя расчеты по стандартным формулам, можно вычислить эти параметры и составить характеристики исследуемого материала.